Word Sense Discrimination by Clustering Contexts in Vector and Similarity Spaces
نویسندگان
چکیده
This paper systematically compares unsupervised word sense discrimination techniques that cluster instances of a target word that occur in raw text using both vector and similarity spaces. The context of each instance is represented as a vector in a high dimensional feature space. Discrimination is achieved by clustering these context vectors directly in vector space and also by finding pairwise similarities among the vectors and then clustering in similarity space. We employ two different representations of the context in which a target word occurs. First order context vectors represent the context of each instance of a target word as a vector of features that occur in that context. Second order context vectors are an indirect representation of the context based on the average of vectors that represent the words that occur in the context. We evaluate the discriminated clusters by carrying out experiments using sense–tagged instances of 24 SENSEVAL2 words and the well known Line, Hard and Serve sense–tagged corpora.
منابع مشابه
Name Discrimination and Email Clustering using Unsupervised Clustering and Labeling of Similar Contexts
In this paper, we apply an unsupervised word sense discrimination technique based on clustering similar contexts (Purandare and Pedersen, 2004) to the problems of name discrimination and email clustering. Names of people, places, and organizations are not always unique. This can create a problem when we refer to or seek out information about such entities. When this occurs in written text, we s...
متن کاملبررسی نقش انواع بافتار همنویسهها در تعیین شباهت بین مدارک
Aim: Automatic information retrieval is based on the assumption that texts contain content or structural elements that can be used in word sense disambiguation and thereby improving the effectiveness of the results retrieved. Homographs are among the words requiring sense disambiguation. Depending on their roles and positions in texts, homograph contexts could be divided to different types, wit...
متن کاملAutomatic Word Sense Discrimination
This paper presents context-group discrimination, a disambiguation algorithm based on clustering. Senses are interpreted as groups (or clusters) of similar contexts of the ambiguous word. Words, contexts, and senses are represented in Word Space, a high-dimensional, real-valued space in which closeness corresponds to semantic similarity. Similarity in Word Space is based on second-order co-occu...
متن کاملSense-aware Semantic Analysis: A Multi-prototype Word Representation Model using Wikipedia
Human languages are naturally ambiguous, which makes it difficult to automatically understand the semantics of text. Most vector space models (VSM) treat all occurrences of a word as the same and build a single vector to represent the meaning of a word, which fails to capture any ambiguity. We present sense-aware semantic analysis (SaSA), a multi-prototype VSM for word representation based on W...
متن کاملSense-Aaware Semantic Analysis: A Multi-Prototype Word Representation Model Using Wikipedia
Human languages are naturally ambiguous, which makes it difficult to automatically understand the semantics of text. Most vector space models (VSM) treat all occurrences of a word as the same and build a single vector to represent the meaning of a word, which fails to capture any ambiguity. We present sense-aware semantic analysis (SaSA), a multi-prototype VSM for word representation based on W...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004